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AbstractÐThe published laccolith analyses are based on the linear plate bending theory and the a priori
assumption that the width of the laccolith is ®xed. This is not the case in an actual situation. The dimension
of the laccolith in the horizontal plane has to result from an additional matching condition at the separation
lines. The published analyses are generalized by dropping the a priori assumption that the width of the lacco-
lith is prescribed, by assuming that the magmatic pressure is not constant, and by taking into consideration
the vertical compressibility of the overburden ``plate'' and base in the contact region. In order to determine
the magnitude of the magmatic pressure, a condition is postulated that equates the measured volume of the
intruded magma in a laccolith with the corresponding analytical expression for the volume. The obtained
closed-form solution appears to satisfy many of the intuitive expectations. It was evaluated numerically and
the results are presented as graphs. It may be concluded that even very small laccoliths may exist, provided
the magmatic pressure is su�ciently larger than the overburden weight. We also show the dependence of the
laccolith size on its stratigraphic position; the thicker the overburden h the larger the size of the laccolith, for
an overburden plate of given thickness, the larger the volume V of the intruded magma, the larger the lacco-
lith width 2a and its height. The paper concludes by discussing a published analysis for laccolith with ¯exible
underburden and overburden. It is shown that this analysis is based on a formulation that is of questionable
validity. # 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

During the past three decades a number of analyses
for the laccolith problem have been published which
are based on the linear plate theory of Timoshenko
and Woinowsky-Krieger, 1959 (e.g., Johnson, 1970;
Pollard and Johnson, 1973). The approach adopted in
these analyses seems to be accepted generally, as indi-
cated by the laccolith presentation by Turcotte and
Schubert (1982). For recent discussions of the geologi-
cal and geophysical aspects of the laccolith problems
refer to Corry (1988) and Jackson and Pollard (1988,
1990).
The fundamental concept of laccolithic intrusions

was conceived by G. K. Gilbert during his geological
investigations of the Henry Mountains, Utah, near the
end of the 19th Century (Gilbert, 1877). Although the
facts that igneous rocks, once molten, may erupt to
form volcanoes were understood at that time, little
was known about how magma traveled from the site
where it melted (presumably in the upper mantle or
lower crust) upward toward the Earth's surface.
Gilbert inferred from his ®eld observations that the
magma intruded upward through the horizontal sedi-
mentary rocks of the Colorado Plateau in tabular
dikes or narrow pipe-like conduits. At depths of a few
kilometers below the Earth's surface the magma turned
and intruded laterally along bedding planes, forming

horizontal, tabular sills. For example, in the Henry
Mountains these sills range from a few meters to
about 20 m in thickness. Some of these sills attained
su�cient area to begin lifting and bending the over-
lying sedimentary strata and thus began the formation
of laccoliths. According to Jackson and Pollard (1988),
the transition between sill and laccolith began when
the magma spread to a diameter of about 2±6 km.
Laccoliths are characterized by roughly ¯at bottom
contacts, conformable with the underlying sedimentary
host rock, and arched upper contacts, conformable
with overlying domes of sedimentary strata.

In the southern Henry Mountains the major lacco-
liths at Mount Holmes, Mount Ellsworth, and Mount
Hillers are roughly circular in plan form, with diam-
eters of 10±14 km (Jackson and Pollard 1988, ®gs 7±
9). Their bases were at a maximum depth of about 4
km at the time of intrusion and the sedimentary strata
was uplifted about 1.2, 1.8 and at least 2.5 km during
emplacement of the magma to form the sedimentary
domes that compose these three mountains.

Plate bending theory has been used to investigate
the upward de¯ections of the overlying strata as driven
by the magma pressure and resisted by the weight of
the strata and its elastic sti�ness. In most engineering
applications of this theory, the ratio of plate thickness
to length is less than 1/10, in keeping with the assump-
tions used to derive the governing equation for the ver-
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tical de¯ections (Timoshenko and Woinowsky-Krieger,
1959). For laccoliths, the ratio of overburden thickness
to intrusive diameter is rarely that small. For example,
in the southern Henry Mountains this ratio ranges
from 2/7 to 2/5. However, as Pollard and Johnson
(1973, ®gs 5 and 6) pointed out, the overburden appar-
ently behaved mechanically as a stack of plates with
variable properties, some of which slipped over one
another during bending. Assuming that the shear stress
between them is negligible, the e�ective bending sti�-
ness of this stack is the sum of the sti�nesses of the in-
dividual plates. It is thus much smaller than the
sti�ness of a continuous plate. In this case each plate
of the overburden with its own (much smaller) thick-
ness may satisfy the 1/10 requirement, thereby bringing
the overburden into the appropriate range for the ap-
plication of plate theory. Jackson and Pollard (1990,
®gs 2±4) have identi®ed and documented the bedding-
plane faults that acted to decouple the strata and
reduce the e�ective bending sti�ness. To this sti�ness
there corresponds a reduced e�ective thickness of the
overburden h.
Not all of the laccoliths in the Henry Mountains are

circular in plan. Indeed, some are tongue-shaped
masses of igneous rock that are elongated in a radial
direction from the central intrusive complex forming
each prominent mountain (Hunt et al., 1953). These
laccoliths may be fed laterally from the central igneous
complex or vertically from radial dikes. Plate theory
models utilizing an elliptical plan have been used by
Pollard and Johnson (1973, ®gs 1±3) to understand the
di�erences between the end-member cases of circular
and very elongate (approximately two dimensional)
laccoliths. In most respects these amount to small
quantitative di�erences, for example in the magnitude
of the de¯ection or stress, and in the general mechan-
ical behavior of the model.
In the following sections the laccolith problem

shown in Fig. 1 is analyzed, at ®rst, without the
assumption of a prescribed a, and then by including
other improvements in the formulation, while retaining
the linear bending theory of plates. The aim of this
paper is to contribute to the determination of an ana-
lytically satisfactory solution for the laccolith problem
under consideration, and at the same time establish the
proper governing equations for problems of this type.

FORMULATION OF THE PROBLEM

To demonstrate a shortcoming of the published lac-
colith analyses, consider the simple two dimensional
problem shown in Fig. 1. In the above references it is
assumed that the mechanical properties of the overbur-
den are represented by an elastic plate in bending that
is being lifted up locally by the intruding magma. The
strata under laccoliths are assumed to respond like
a rigid body (compared to the ¯exibility of the
overburden).

The corresponding formulation utilizes the simplify-
ing assumption of cylindrical bending (plane strain),
i.e. w = w(x) only, and the anticipated symmetry of
the bent plate. It consists of the equations

Dwiv�x� � q0 ÿ p

w�x� � 0

0RxRa

aRx <1
�

�1�

and the boundary conditions

w 0�0� � 0;

w�a� � 0;

w 000�0� � 0

w 0�a� � 0

�
�2�

where w�x� is the vertical displacement of the plate
reference plane at point x with positive displace-
ments directed downward in the positive z direction,
( )'=d( )/dx, D is the equivalent ¯exural sti�ness of
the overburden plate, q0 is the constant weight of the
overburden per unit horizontal area, and p is the
upward magmatic pressure.

In the publications cited above it is understood that
the process of intrusion involves a continuous change
in horizontal dimension, as the magma spreads later-
ally during growth of the laccolith (see e.g. the discus-
sion of the Black Mesa laccolith in Pollard and
Johnson, 1973, ®g. 25). Nonetheless, these analyses
were based on the boundary conditions de®ned at a
particular width, x = a , as in equation (2) above, so
the width had to be speci®ed a priori. Then, the sol-
ution to the governing equations (1) and (2) was used
to compute the vertical displacement distribution of
the plate reference plane over the range 0RxRa, and
the associated stress distribution throughout the plate.
These distributions were used to infer the mechanical
state of the overburden at a time in the evolution of
the laccolith when the width had reached that particu-

Fig. 1. Analytical model for laccolith structure under consideration.
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lar value. Earlier and later times in the laccolith evol-
ution were evaluated by specifying the appropriate
width and recalculating the displacements and stresses.
This procedure does not address the question: what

is the equilibrium width of the laccolith for a given
magmatic pressure (or volume of magma) and resist-
ance to bending? Indeed, from this analysis it is not
obvious whether the laccolith would continue to grow
in width beyond that speci®ed by x = a, or if the lac-
colith would have stopped growing in width before
reaching the speci®ed value. Using the solution to
equations (1) and (2) for a particular width, one can
choose a greater or lesser magma pressure and calcu-
late a greater or lesser maximum displacement, w(0),
of the plate. Presumably, for some values of pressure,
the plate would lift up at the periphery x = a, the
magma would ¯ow laterally, and the laccolith would
propagate by increasing in width. Obviously, the width
has to depend on the magnitude of the pressure p, as
well as on the plate (overburden) parameters.
The length 2a has to result from a properly posed

analysis. Following Kerr (1976), who developed the
variational method for structures with varying match-
ing points, and Kerr and El-Aini (1978), the additional
condition for the determination of a is

w 00�a� � 0: �2a�
Noting that the bending moment in the plate is given
by the equation Mxx(x) =ÿDw0(x) (Timoshenko and
Woinowsky-Krieger, 1959), it follows that condition
(2a) implies that the bending moments Mxx are zero
along the periphery of the laccolith. This condition
appears justi®ed mechanically, when considering Fig. 1.
Namely, since the bending moments are zero in the
adjoining regions (for vxv>a) where the plate is in con-
tact with the ¯at base, hence w0w'0w000 for
vxv>a, the bending moments Mxx are also zero along
the separation lines at vxv = a.
Condition (2a) does not agree with the ®nding by

Pollard and Johnson (1973, Part II, ®g. 12B), who a
priori assumed that the laccolith width is known,
assigned to it a number, and then found that
Mxx(a)$0.

ANALYSIS

Analysis based on the theory of plates, but without the
assumption that the separation lines are a priori pre-
scribed

The general solution of the di�erential equation in
(1) for p = p0=constant is

w�x� � A1 � A2x� A3x
2 � A4x

3 � �q0 ÿ p0�x4
24D

�3�

Substitution of this expression into the boundary con-

ditions (2) yields

A1 � �a0 ÿ p0�a4
24D

; A2 � 0

A3 � ÿ �q0 ÿ p0�a2
12D

; A4 � 0

)
�4�

Thus, the solution is (Pollard and Johnson, 1973,
equation 9a)

w�x� � �q0 ÿ p0�
24D

�a2 ÿ x2�2 0 < x < a: �5�

If condition (2a) is imposed for the determination of a,
it follows that

�q0 ÿ p0�a2
3D

� 0: �6�

Since a$0 and D$0, this equation is satis®ed only
when p0=q0, and a is arbitrary. Thus w(x)00, and
there is no bending or displacement of the plate.

The above analysis does not yield a reasonable
result, since it is expected that p0 should be greater
than q0, in order to lift the plate o� the base, and w(x)
should not be equal to zero. This is the reason why in
the earlier papers mentioned above, a was assumed to
be a priori ®xed. Therefore, in the following section
the above analysis is generalized.

Analysis based on the additional improvement that the
magmatic pressure is not constant

In addition to dropping the assumption that a is
®xed, the problem is generalized further by prescribing
that the magmatic pressure varies by decreasing
toward the periphery of the conduit as

p�x� � p
� �1ÿ �x=a�n�: �7�

This decrease in pressure with distance from the feeder
is consistent with the known behavior of magmas.
Whether the rheological properties of the magma are
best described as Newtonian viscous or pseudoplastic,
the drag along the wall of the conduit produces a drop
in pressure, as the magma ¯ows from the feeder
toward the periphery (Johnson and Pollard, 1973). The
exact form of this pressure distribution will depend
upon the properties of the magma (and how it changes
with shearing and heat loss along the conduit) and the
changes in geometry of the conduit. As the laccolith
approaches an equilibrium width, the magma will stop
¯owing and the pressure distribution will approach a
uniform value for magmas with little or no strength.
For Bingham magmas the inherent strength can sup-
port a pressure drop even if ¯ow has ceased.

In expression (7), n is a parameter to be chosen. The
distributions of p for di�erent values of n are shown in
Fig. 2. Note that n = 1 corresponds to the linearly
varying case discussed by Pollard and Johnson (1973,

Toward more realistic formulations for the analysis of laccoliths 1785



Fig. 2. Magmatic pressure according to equation (7).

Part II, ®g. 7) and n =1 corresponds to a constant
pressure p0 discussed above, and used previously by
Johnson (1970) and Turcotte and Schubert (1982).
It is not the purpose of this paper to investigate the

rheology of magmas and how the changing shape of
the magmatic conduit e�ects the pressure distribution;
therefore, a speci®c n-value is not prescribed. In its
general form (7), it includes many of the cases appli-
cable to laccoliths.
In equation (7) the peak magmatic pressure pÊ at

x = 0 is, as yet, unknown. Its value is needed for the
assessment of the laccolith formation. Therefore, there
is a need for an additional condition for the determi-
nation of pÊ. In this connection it should be noted that
®eld data of a known laccolith structure may directly
yield an estimate of the volume of the intrusion V, per
unit length in the y-direction (i.e. perpendicular to the
plane of view in Fig. 1), but not the intensity of the
magmatic pressure. For this reason, in the following
analysis an additional condition is postulated for the de-
termination of pÊ, by equating the measured volume of
the intruded magma, V, with the corresponding ana-
lytical expression.

Therefore, the proposed analytical formulation for
the problem shown in Fig. 1 consists of the equations

Dwiv�x� � q0ÿ p
� �1ÿ �x=a�n�

w�x� � 0

0RxRa

aRx <1;
�
�8�

the boundary conditions

w 0�0� � 0; w 000�0� � 0; �9�

w�a� � 0; w 0�a� � 0; w 00�a� � 0; �10�
and the volumetric condition

ÿ2
�a
0

w�x� dx � V: �11�

The negative sign is necessary because, for the sign
convention used, lift-o� implies w(x) < 0 but V>0.
The third equation in (10) and the one stated as
equation (11) are the additional two conditions for the
determination of a and pÊ.

The general solution of the di�erential equation (8) is

w�x� � A1 � A2x� A3x
2 � A4x

3 � �q0ÿ p
��x4

24D
� p

�
xn�4

Dan�n� 1��n� 2��n� 3��n� 4� 0 < x < a: �12�

Substitution of this expression into equation (9) and into the ®rst two boundary conditions in (10) yields

A1 � �q0ÿ p
��a4

24D
� p

�
a4�n� 2�

2D�n� 1��n� 2��n� 3��n� 4� ; A2 � 0

A3 � ÿ �q0ÿ p
��a2

12D
ÿ p

�
a2

2D�n� 1��n� 2��n� 3� ; A4 � 0:

)
�13�

The third condition in (10) yields

p
�� �n� 1��n� 3�
�n� 1��n� 3� ÿ 3

� �
q0: �14�

Substitution of equation (12), in conjunction with (13), into the volumetric condition (11) results in

a � 180 DVn�

p
� �8n� ÿ 180�n� 2��n� 5� � 60�n� 4��n� 5� ÿ 360� ÿ 8q0n�

( )1=5

�15�
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where

n� � �n� 1��n� 2��n� 3��n� 4��n� 5�: �15a�
This completes the solution for the problem formu-
lated by equations (8)±(11).
For example, when n = 1 (linear pressure drop)

p
� � �8=5�q0; a � �225 DV=q0�1=5:

For this case, the magma pressure at the center of the
laccolith, pÊ, is greater than the overburden weight per
unit area by the factor 8/5. At x = a the pressure dis-
tribution described by equation (7) goes to zero, so
p(x) exceeds q0 only from x/a = 0 to x/a = 3/8. The
fact that the magma pressure is less than the weight
per unit area of the plate from x/a = 3/8 to x/a = 1
provides the necessary conditions to reduce the curva-
ture at the periphery to zero as required by the third
boundary condition in equation (10). For a meaningful
solution using this boundary condition there must be a
region near the center of the plate where p(x)>q0 to
cause the upward displacement, and another region
near the periphery where p(x) < q0 to provide the
downward directed force necessary to reduce the bend-
ing moment (and curvature) of the plate to zero at
x = a. For the particular pressure distribution in
equation (7) where n =1, such contrasting regions
do not exist because p(x) = p0 =constant, and the
only solution is the trivial one, p0=q0, for which
w(x) = 0 and there is no upward displacement.
According to equation (15) the laccolith length 2a

depends, as anticipated, on the weight of the overbur-
den q0, the volume of the intruded magma V, the
equivalent ¯exural sti�ness of the overburden plate D,
and the pressure parameter n. Also, a increases with
increasing V and D, as expected. However, according
to equation (14), pÊ depends only on q0 and n.
Although pÊ>q0 is intuitively correct, one would antici-
pate that pÊ should also depend on V and D.

It appears that in order to obtain an analytical sol-
ution that agrees with intuition, a further generaliz-
ation of the above formulation, equations (8)±(11), is
necessary. This is done in the following section.

FURTHER GENERALIZATION

Inclusion of vertical compressibility of the plate±base
interface

When analyzing beams or plates that rest on a
`rigid' base and are subjected to bending, peculiar
results are obtained, like the appearance of concen-
trated contact reactions along separation lines that do
not occur in actual situations. They represent strong
increases of reaction pressures in real problems, along
a narrow region near the separation lines. The main
cause for these problems is that the classical bending
theories of beams and plates do not include defor-
mations caused by shear. Another cause is that they
tacitly imply that these beams and plates are not com-
pressible in the transverse direction: namely that
Ezz00.

The above discussion suggests that a further general-
ization of the used analytical formulation should
include the vertical compressibility of the plate±base
contact region. This inclusion is also necessary for
establishing the magmatic pressures below which the
laccolith will not form; closely related to the minimum
size of laccoliths, discussed by Gilbert (Johnson, 1970).

In order to maintain analytical simplicity, in the fol-
lowing the vertical compressibility in the contact
region is represented approximately by two compressi-
ble spring layers; one attached to the bottom of the
plate and the other to the top of the base, with spring
coe�cients kp and kb, respectively, as shown in Fig. 3.

Fig. 3. Generalized model for the laccolith. (For clarity of presentation, the spring layers in the lift-o� region are not
shown.)
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Utilizing symmetry and denoting w(x) = wx and
w(x) = wx, the analytical formulation of the laccolith
problem shown in Fig. 3 consists of the two di�eren-
tial equations

Dwiv
x � q0ÿ p

� �1ÿ �x=a�n� 0 < x < a �16�
Dwiv

z �kwx � q0 0 < x <1 �17�
where k = kpkb/(kp+kb), the boundary conditions

w 0x � 0;

wx�a� � 0;

w 0x�a� � w 0z�0�;
w 000x �a� � w 000x �0�;

w 000x �0� �0
wx�0� � 0

w 00x �a� � w 00x �0�
lim
x41
fwx;w

0
xg4 �nite;

�18�

and the volumetric condition

ÿ2
�a
0

wxdx � V �19�

for the determination of the eight integration constants
A1±A8 and the two parameters (a, pÊ).
Note that in the above formulation, the chosen lo-

cation of the reference axis x of the overburden plate
refers to the case when q000, as shown in Fig. 3.
The general solutions of equations (16) and (17) are

wx �A1 � A2x� A3x
2 � A4x

3

� �q0ÿ p
��x4

24D
� p

�
xn�4

Dan�n�1��n� 2��n� 3��n� 4� �20�

and

wx �eÿbx�A5 cos bx� A6 sin bx�

� ebx�A7 cos bx� A8 sin bx� � q0
k

�21�
where

b � 4

�������
k

4D

r
: �21a�

Substitution of above expressions for wx and wx into
equation (18), except for w0x(a) = w0x(0), yields the
constants

A1 � �q0ÿ p
��a4

24D
ÿ �q0ÿ p

��a2
4b2D

ÿ q0ba
k
� p
�
a2�2�ba�2 ÿ �n� 3��n� 4��
4b2D�n� 1��n� 3��n� 4� ;

A2 � 0; A4 � 0; A5 � ÿ q0
k

;

A3 � ÿ�q0ÿ p
��a2

12D
� �q0ÿ p

��
4b2D

� q0b
ka
� p

�

4b2D�n� 1� ÿ
p
�
a2

2D�n� 1��n� 2��n� 3� ;

A6 � p
�
a

2b3D�n� 1� �
�q0ÿ p

��a
2b3D

� q0
k

; A7 � 0; A8 � 0:

�22�

Substitution of (20) and (21) into the remaining con-
dition w0x(a) = w0x(0), and utilizing the determined ex-
pressions for A3 and A6 given in (22), yields the
expression

p
�� 2�ba�3 � 6�ba�2 � 6�ba� � 3

�ba� 2�ba�2 � 6�ba� � 3ÿ 6
�n� 1�

�ba�2
�n� 3� � �ba� �

1
2

� �� � q0
�23�

For the case when the magmatic pressure is
uniform, p(x) = p0=constant. According to
equation (7) and Fig. 2, this corresponds to n 41.
Thus, p0=pÊ. For this case, the bracketed term in the
denominator of equation (23) vanishes. The resulting
relation is

p0 � 2�ba�3 � 6�ba�2 � 6�ba� � 3

�ba��2�ba�2 � 6�ba� � 3� q0 �23a�

or rewritten

p0 � 1� 3�1� �ba��
�ba��2�ba�2 � 6�ba� � 3�

� �
q0: �23b�

Note that, as expected, pÊ and p0 are >q0, and that,
unlike equation (14) where p depends only on n and
q0, p0 =pÊ also depends on the overburden plate par-
ameters and on k.

Finally, noting (20) and (22), and substituting

wx �A1 � A3x
2 � �q0ÿ p

��x4
24D

� p
�
xn�4

Dan�n� 1��n� 2��n� 3��n� 4� �20a�

into the volumetric condition (19) results in
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2

15
�q0ÿ p

���ba�5 ÿ �q0ÿ p
���ba�3 ÿ q0�ba�2� p

� �ba�3 �3�ba�
2 ÿ �n� 3��n� 4��

�n� 1��n� 3��n� 4�

ÿ p
� �ba�5 ��n� 4��n� 5� ÿ 6�

�n� 1��n� 2��n� 3��n� 4��n� 5� � ÿ3b
5DV: �24�

When the magmatic pressure is uniform, n 41, p0=pÊ, and equation (24) reduces to

2

15
�q0 ÿ p0��ba�5 ÿ �q0 ÿ p0��ba�3 ÿ q0�ba�2 � ÿ3b5DV: �24a�

Equation (23) and (24) are the two additional re-
lations for the determination of the laccolith width,
2a, and the magmatic pressure p(x)=pÊ[1ÿ (x/a)n].
This completes the analytical solution of the pro-

blem shown in Fig. 4. It consists of wx and wx given
in (20) and (21), the constants in (22), and the two re-
lations (23) and (24) for the determination of the lift-
o� length, 2a and the magmatic pressure, p.
To demonstrate the characteristic features of this

solution, at ®rst equation (23) is evaluated numeri-
cally for the n-values used in Fig. 2, the e�ective
overburden thickness h = 500 m, and k = 20,000 kN
mÿ3 and 50,000 kN mÿ3. The obtained results are
shown in Fig. 4.
Note that the e�ect of the chosen compressibilities

of the overburden-base region, k, is not signi®cant

for 2a>3 km. Also note, that for any of the n-values
used (thus, also for p = constant), a laccolith with a
very small width 2a will exist provided pÊ (or p0) is
su�ciently larger than q0. This result seems to par-
tially explain the observation by Gilbert (1877) about
the smallest size of encountered laccoliths (Johnson,
1970, Chapter 2). When considering this aspect, the
interpretation of the `e�ective overburden thickness'
of each layer, h, by Pollard and Johnson (1973)
should be taken into consideration for the small
width of the laccolith, 2a. Also note, that below a
certain size the pressure required to bend the over-
burden is excessive. Therefore, a possible explanation
of this phenomenon is that, at ®rst, the magma is
injected as a sill that locally deforms both overlying
and underlying strata.

Fig. 4. Dependence of 2a on pÊ/q0, n, and k. (Ð- k= 20,000 kN m3; _____ k = 50,000 kN/mÿ3.)
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According to equation (23), as ba41
p
�

q0
� 1

1ÿ 3=��n� 1��n� 3�� : �25�

This equation establishes the horizontal asymptotes for
the curves in Fig. 4. For the case when p = con-
stant = p0 (i.e. when n =1) then, according to
equation (25), p0=q0. This is anticipated, because of

the vertical equilibrium of the entire overburden plate.

For variable p, according to equation (25), pÊ>q0. This

condition also agrees with vertical equilibrium.

To show the in¯uence of the e�ective overburden

thickness h, equation (23) is evaluated for

p = p0=constant (n =1), k = 50,000 kN mÿ3, and

h = 100, 200, and 500 m. The results are shown in

Fig. 5. This graph shows the dependence of the lacco-

Fig. 5. Dependence of 2a on p0/q0 and the overburden thickness h.

Fig. 6. Dependence of 2a on the volume of intruded magma, V.
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lith size on its stratigraphic position (Johnson, 1970, p.

70); the thicker the overburden h the larger the size of

the laccolith 2a.

To determine the e�ect of the volume of the

intruded magma, V, on the lift-o� width of the lacco-

lith, 2a, the pressure pÊ (or p0) given in equation (23)

(or 23a) has to be substituted into equation (24) (or

24a). For the case of uniform pressure p0=constant,

equation (23b) is substituted into equation (24a). The

resulting relation is

�ba�3�2�ba�2 � 12�ba� � 15�
5�2�ba�2 � 6�ba� � 3� � 3b5DV

q0
: �26�

Equation (26) was evaluated numerically, by assuming

values of a and b and then by calculating the corre-

sponding V-values from equation (26). The graphs for

h= 100, 200, and 500 m, and k = 50,000 kN mÿ3 are

shown in Fig. 6.

Note the dependence of the laccolith size on its stra-
tigraphic position and the volume of the magmatic
intrusion. For example, for V= 10 km3 and
h = 100 m the width of the laccolith is 2a 343 km,
whereas for h = 500 m it is355 km.

It is also of interest to determine the e�ect of the
volume of the intruded magma V on the shape of the
deformed overburden `plate'. As an example,
equation (20) was evaluated, noting the integration
constants in equation (22), and the determined a vs V
values in Fig. 6. The obtained results are shown in
Fig. 7. Note that a will be smaller if the spring layers
are assumed attached to each other and are then sub-
jected to a `separation' criterion.

As expected, for an overburden plate of given thick-
ness, the larger the volume of the intruded magma V,
the larger the width of the laccolith 2a and its height.

CLOSELY RELATED PROBLEM

A generalization of the laccolith problem shown in
Fig. 1 was discussed by Petraske et al. (1978).

Fig. 7. Dependence of laccolith pro®le on volume, V.

Fig. 8. Model for analyzing the e�ect of magma intruded into lithosphere, according to Petraske et al. (1978).
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According to this paper, ®eld studies of deformation
about some basic intrusives indicate that bending of
the strata below an intrusion, as well as above, must
be considered. Therefore, under certain geologic con-
ditions the ¯oor of the magma chamber may not be
assumed to be `rigid', since it will be deformed as well
by the intruding magma. Following the concepts of
plate tectonics, they assumed the model shown in Fig. 8
for the analytical study of the emplacement mechanics
of basic intrusions.
In this idealized model the substratum is the asthe-

nosphere which acts like a weak ¯uid. The material
below the intrusion and above the substratum is
referred to as the `underburden'. The magma is
assumed to intrude horizontally into a lithosphere
which has homogeneous and isotropic material proper-
ties. The magma is considered to act as a weak
Newtonian ¯uid and the pressure was assumed to be
constant throughout the formation.
Although this model may be applicable to certain

geophysical situations, its analytical formulation as
presented by Petraske et al. (1978), is not correct. For
example, the di�erential equations for the overburden
and underburden cannot be solved independently as
done in this paper, since they interact along the separ-
ation lines, at vxv = a, and the pressure exerted by the
magma on the underburden depends on both de¯ec-
tions. The interaction should be described analytically
at vxv = a by the proper number of matching con-
ditions. For example, at vxv = a the de¯ections of both
plates should be the same (not necessarily = 0). Also,
at vxv = a the slopes of the upper and lower plates
should be equal, since bending plate theory is being
utilized.
The authors did not use matching conditions, but

rather a number of boundary conditions of question-
able validity. For example, there is no justi®cation to
assume that at the ends of the intrusion, at vxv = a, the
overburden de¯ection V1 is = 0 and the slopes dV1/
dx = 0. Nor is there justi®cation to state that along
vxv = a the de¯ection of the underburden V2 is = 0.
Also, the assumption that the laccolith length 2a is
®xed a priori is not justi®ed. This value should result
from a proper formulation, as discussed previously.
Therefore, the relevant conclusions arrived at by the

authors, regarding the formation of the laccolith as
shown in Fig. 8, should be used with caution.

CONCLUSIONS

In the present paper, a sequence of improvements
was introduced in the analysis of the laccolith shown
in Fig. 1. From the obtained results it may be con-
cluded that: (1) The width of the laccolith should not
be assumed to be a priori ®xed. It should be deter-

mined from an additional matching condition at the
separation lines vxv = a. For a justi®cation of this
approach using variational calculus, refer to Kerr
(1976, Problem III) and Kerr and El-Aini (1978); (2)
To obtain intuitively meaningful analytical results, the
e�ect of vertical compressibility of the interface region,
between the overburden plate and the upper layer of
the `rigid' base, has to be included. In the present
paper this was modeled, approximately, by including
elastic spring layers in the contact region; (3) The mag-
matic pressure p, which enters the governing di�eren-
tial equation for the overburden `plate', is at ®rst
unknown. However, since the volume of the magma
intrusion V may be estimated from ®eld data of a
known laccolith structure, an additional condition was
postulated for the determination of pÊ (or p0), by equat-
ing the measured V with the corresponding analytical
expression.

The results obtained, by including these analytical
generalizations, appear to satisfy many intuitive expec-
tations. Thus, equations (16)±(19) form a reasonable
analytical formulation for the laccolith problem under
consideration.

It should be noted, however, that the presented ana-
lyses are based on the assumption that the laccolith
structure deforms elastically and that the vertical over-
burden displacements are relatively small. Therefore,
they are valid only for the initial stages of the laccolith
formation. Analyses for the later stages will have to be
based on overburden equations for larger displace-
ments, that will be able to predict also the generated
axial forces caused by vertical lift-o�. They will also
have to utilize elastoplastic and viscoelastic constitutive
equations, and related elements of fracture mechanics.
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